This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.

CALIFORNIA
STATE BOARD OF FORESTRY

BULLETIN No. 5

A Discussion of Log Rules

Their Limitations and Suggestions for Correction

BY
H. E. McKENZIE

California
State Printing Office
1915

CALIFORNIA STATE BOARD OF FORESTRY

Hibam W. Johnson Governor
Frank C. Jordan Secretary of State
U. 5 Webb Attorney General
G. M. Homans State Forester
OFFICE OF STATE FORESTER
G. M. Homans State Forester
Alexander W. Donge Deputy State Forester
J. Diehl Schoeller Assistant State Forester
H. E. MoKenzieForest Engineer
W. J. Moodet Secretary
J. A. Harney Clerk

PREFACE

THE lumberman is beginning to realize the necessity for standardizing the methods employed in handling his industry. We recognize the problem of standardization as a broad one and feel that the following discussion of \log rules is an appropriate contribution to the solution of a problem which influences both the commercial handling of lumber and the scientific study of forest products. There is an unquestionable need for a standard rule for the accurate determination of the volume of logs of various lengths and diameters, and the amount of manufactured lumber possible to produce from such logs. There are many log rules in use throughout the United States, some more accurate than others.

The following discussion has been prepared by Mr. H. E. McKenzie, Forest Engineer with this department, and was suggested by the result of a mill scale study (to be issued as a separate publication) in which the statute rule of California, the Spaulding Log Rule, was found to show a marked discrepancy between the \log scale and the amount of lumber sawed out. This discrepancy led to the further investigation embracing all of the \log rules in use in the United States, with the view of determining what rule, if any, is universally applicable or to devise such a rule.
G. M. HOMANS,

State Forester.

CONTENTS

Page
INTRODUCTION 5
CONSTRUCTION AND UNDERLYING PRINCIPLES OF LOG RULES 6
Log Rules in General 6
The Three Rules Most Commonly Used:
The Spaulding Log Rule 7
The Scribner Log Rule 10
The Doyle Log Rule. 13
The McKenzie Log Rule 16
Its Application 20
A COMPARISON OF THREE DIFFERENT TYPES OF LOG RULES 30
MISCELLANEOUS LOG RULES 38
LOG RULES BASED ON STANDARDS 39
THE TRANSFORMATION OF VOLUME TABLES BASED UPON A GIVEN LOG RULE TO VOLUME TABLES BASED UPON OTHER RULES 43
THE TRANSFORMATION OF THE SCALE OF A NUMBER OF LOGS IN THE AGGREGATE, BASED UPON A GIVEN LOG RULE, TO THE SCALE OF THE SAME LOGS IN THE AGGREGATE, BASED UPON ANOTHER LOG RULE 49
SUMMARY 51
APPENDIX 53

ILLUSTRATIONS

Pagk
Fig. 1. A Graphic Analysis of the Spaulding Log Rule 8
Fig. 2. A Curve Showing How Closely the Formula (.048 $\boldsymbol{D}^{2}-2$) $L=$ B.M. Fits the Spaulding Log Rule 9
Fig. 3. A Graphic Analysis of the Scribner Log Rule 11
Fig. 4. A Curve Showing How Closely the Formula (.048 $\left.D^{2}-3\right) L=$ B.M. Fits the Scribner Log Rule 12
Fig. 5. A Graphic Analysis of the Doyle Log Rule 14
Fig. 6. The Doyle Log Rule as Applied to a 6" Log 15
Fig. 7. The Doyle Log Rule as Applled to a $30^{\prime \prime}$ Log 15
Fia. 8. A Graphic Analysis of the McKenzie Log Rule 19

DISCUSSION OF LOG RULES.

INTRODUCTION

IT is customary among the lumbermen of this country, when buying or selling logs, to base their calculations upon the value of the lumber the logs will produce when sawed rather than upon the total volume. The by-products, such as slabs, sawdust, and loss by normal crook, which accompany the manufacture of lumber from logs of various sizes, are therefore ignored in the valuation, and tables have been compiled which aim to show the volume of lumber in units, known as board feet ($1^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$), after the elimination of by-products has been made. Such tables are called "log rules."

It is the object of this publication to discuss many of the different log rules now in use, to show the principles upon which they are based, and wherein they are defective; to introduce a new log rule, based upon mathematical principles, and designed to be flexible to the varying conditions, both in milling operations and in the character of the timber to be sawed. Also, to show relations, where they exist, between any two rules or any number of rules, such that a transformation from one rule to another can be accomplished, and to reduce the various rules, wherever possible, to a definite form, in order that comparisons by formulx may be easily made, and the allowance for slabs, sawdust, etc., by each rule readily ascertained.

CONSTRUCTION AND UNDERLYING PRINCIPLES OF LOG RULES.

LOG RULES IN GENERAL.

About forty-five \log rules have been devised within the last seventyfive years for the measurement of sawed lumber from logs of different sizes, and the values shown by these different rules cover an enormous range. It is safe to say that 90 per cent of them are so constructed that at best they are of value only under the conditions of the locality where they were first employed, and there is no means whereby they can be intelligently corrected for other conditions. Such is the case with all log rules based upon diagrams showing the amount of lumber in logs after allowances have been made for slabs, saw-kerf, etc. Such is the case with all \log rules obtained by correcting these rules or combining them for others. Also rules resulting from actual experience at sawmills have the same objections. They bear the prints of local conditions and, due to the method whereby they came into existence, they can never be anything more than local, and can only be applied to milling conditions similar to those existing at the mills where they were first constructed.
The only logical way of constructing a \log rule which will be flexible and which will adjust itself to universal conditions, is to so construct it that the underlying, fundamental principles are so segregated as to make them independent of one another, and to have them so worked together as to give the aggregate result of all factors, which will be in all cases proportional and equal to the volume of the manufactured product. There are several distinct principles underlying the measurement of lumber which logs of different sizes will produce, which cannot be overlooked in any rule that is destined to become a correct universal measure. Such a rule must embody the principle that the slabs which cover the material, or part of the log which is to become the finished product, should be allowed for by making the allowance proportional to the barked area of the log. The slabs are the covering, as it were, which necessarily has to be removed in order to get to the part of the log that produces lumber, and they should not be, and are not, cut any thicker from large logs than from small ones. The best material contained in the \log usually lies nearest to the bark, and it is greatly to the advantage of the millman not to waste any of his best grades.

Several \log rules in most common use today do not embody the above principle. The spaulding Log Rule, which is the statute rule of California. does not adhere to it. The Scribner Rule. which is the official rule of the Forest Service, U. S. Deparment of Agriculture, and of several states, does not take it into consideration, and instead of having the volume of slabs proportional to the barked area of the logs, they have them proportional to the total volume, as will be shown further on.

It would not be any more absurd if one tricd to figure the number of board feet necessary to side up a house by figuring the volume of the house instead of its lateral surface. A definite per cent cannot be given as indicating the relation of slabs to trees of different volume, any more than a definite per cent can be given as indicating the relation of all lateral surface to the volume of houses of different dimen-
sions. The Spaulding, Scribner and all other \log rules with a waste allowance for slabs varying directly as the volume of the log are mathematically incorrect, since there is no reason for cutting any thicker slabs from large logs than from small ones.

Another principle underlying the measurement of lumber contained in logs of different diameters and lengths is the relation of the allowance for sawdust to the size of the log. Since the waste allowance which should be allotted to slabs should be proportional to the barked area, it can be met by reducing the diameter of all sized logs a constant amount, and the remaining volume can then be considered as lumber plus sawdust. It is very evident that the sawdust allowance depends upon the dimensions of the lumber to be sawed and upon the width of the saw used. It is also evident that, for any specific width of saw-kerf and dimensions of lumber to be sawed, the allowance for sawdust should be a definite per cent of the total volume of all logs, not including slabs. A sawdust factor which fulfills these conditions is as follows:

$$
\frac{k(w+t+k)}{(w+k)} \frac{(t+k)}{(w+i n}
$$

Where $k=$ width of saw. in inches.
$w=$ average width of lumber to be manufactured, in inches.
$t=$ average thickness. in inches.
This factor shows what fractional part of the \log minus allowance for slabs should be allowed for sawdust.

$$
\left[1-\frac{k(w+t+k)}{(w+k)(t+k)}\right]
$$

represents the fractional part of the \log after slab allowance is made, which becomes lumber.

Log rules which ignore these principles can not be any more than local rules, applying to conditions existing at very few mills.

There are several other considerations to be taken into account in constructing a \log rule, which are not of such vital importance as the two principles cited above. They are allowances for taper. shrinkage, normal crook and excessive taper in small logs. All of these factors depend largely upon the character of the timber, and should be adjusted accordingly for the different species, and for the same species growing under different conditions.

THE THREE RULES MOST COMMONLY USED.

The Spaulding Log Rule.
The Spaulding Log Rule is the statute rule of California, having been adopted by an act of the legislature in 1878 . It is constructed from diagrams, and the following comments upon it were published by its author:
"Fach sized \log has been scaled so as to make all that can be practically sawed out of it, if economically sawed. Earh log to be measured at the top of small end, inside of the bark. and if not round, to be measured two ways-at right angles-and the average
taken for the diameter. Where there are any known defects, the amount to be deducted should be agreed upon by the buyer and the seller, and no fractions of an inch to be taken into the measurement.
"In the foregoing table I have varied the size of the slab in proportion to the size of the \log, and have arranged it more particularly for large logs by taking them in sections of twelve feet and carrying the table up to $96^{\prime \prime}$ in diameter. As there has never been any in use for scaling over 44", it has been my purpose to furnish a table for the measuring of logs that can be implicitly relied upon for correctness by both the buyer and the seller; and to do so, I have spared no pains to render it perfect."
This rule has been very carefully prepared, and all values given are very consistent with the principles upon which it is constructed. These principles are clearly shown in the graphic analysis nade of the rule in Fig. 1. They are as follows: (a) The sawdust allowance varies

Fig. 1. A graphic analysis of the Spaulding Log Rule, based upon area in square fect inside bark at small end of logs. This diagram shows the following: (a) Top curve, total contents in board feet of logs of different diameters 16^{\prime} long with no allowance made for taper. (b) Curve " k," volume in board feet remaining after 18% of the total volume has been allowed for sawdust (this allowance is about right for $\}^{\prime \prime}$ saw-kerf). (c) Curve passing through origin and drawn parallel to bottom curve. (d) Bottom curve located by plotting volumes in board feet for 16' logs of even Inches in diameter hiside bark, as given by the Spaulding Log Rule. The formula indicated by this analysis is as follows: $\left(.0+8 D^{2}-2\right) L=B . M . \equiv$ volume in board feet.
directly with the volume. (b) Slab allowance varies directly as the volume plus a constant. (c) No allowance made for taper. (d) No allowance made for normal crook. (e) Total waste allowance remains constant, regardless of the width of saw-kerf.

The big disadvantage of such a rule lies in the fact that it is not flexible to conditions existing at mills in different localities where it
might be used, or to the character of the timber sawed. It is unaffected by taper, normal crook, width of saw-kerf and excessive taper in small logs, and such corrections can not be properly made due to the diagram
method used in first constructing the rule. Fig. 1 indicates the following formula: $\left(.048 D^{2}-2\right) L=$ B. M. $=$ volume in board feet, which very closely fits this rule as shown in Fig. 2.

Small logs will invariably over-run this scale, due to the constant " 2 " shown by the formula. Intermediate logs will hold up the scale, fall below, or go above, largely depending upon the width of saw-kerf and
the average dimensions of the lumber sawed. Large logs will generally run higher than the intermediate sizes, due to the fact that the slab allowance varies directly with the volume plus a constant. The following deduction shows the total waste allowance of the Spaulding Log Rule expressed in per cent of the rule:
(. $\left.048 D^{2}-2\right) L=B$. M. $=$ total sawed out as shown by Spaulding Log Rule.
$\frac{.7854 D^{2}}{12} L=$ total contents $=.0655 D^{2} L$
$.0655 D^{2} L-\left(.048 D^{2}-2\right) L=$ waste $=\left[(.0655-.048) D^{2}+2\right] L$ $=\left(.0175 D^{2}+2\right) L$.
$100 \frac{\left(.0175 D^{2}+2\right) L}{\left(.048 D^{2}-2\right) L}=\underset{\text { by Spaulding Log Rule. }}{\%} \underset{\text { waste based on total sawed out as shown }}{\text { by }}$

$$
=100 \frac{.0175 D^{2}+2}{.048 D^{2}-2}
$$

When $D=10^{\prime \prime}$, the waste allowance based on the total sawed out
as shown by the Spaulding Log Rule $=134 \%$.
When $D=20^{\prime \prime}$, the waste allowance $=52.2 \%$.
When $D=30^{\prime \prime}$, the waste allowance $=43.1 \%$.
When $D=40^{\prime \prime}$, the waste allowance $=40.1 \%$.
When $D=$ diameter in inches of very large logs, waste allowance $=36.5 \%$.

The Scribner Log Rule.

The Scribner Log Rule is the oldest rule in general use, and is the statute rule of Idaho, Minnesota, Oregon, Wisconsin and West Virginia. Also, it is the official rule adopted by the Federal Forest Service.

It was constructed from diagrams the same as the Spaulding Log Rule, and the following description was published by its author in 1846:
"This table has been computed from accurately drawn diagrams for each and every diameter of logs from twelve inches to fortyfour, and the exact width of each board taken afier being squared by taking off the wane edge and the contents reckoned up for every log, so that it is mathematically certain that the true contents are here given, and both buyer and seller of logs will unbesitatingly adopt these tables as the standard for all future contracts in the purchase of saw logs where strict honesty between party and party is taken into account. In these revised computations I have allowed a thicker slab to be taken from the larger class of logs than in the former edition, which accounts for the discrepancy between the results given in these tables and those in former editions.
"The diameter is supposed to be taken at the small end, inside the bark, and in sections of 15^{\prime}, and the fractions of an inch not taken into the measurement. This mode of measurement, which is customary, gives the buyer the advantage of the swell of the log, the gain by sawing into scantling, or large timber, and the fractional part of an inch in the diameter. Still it must be remembered that logs are never straight and that oftentimes there are concealed defects which must be taken as an ofiset for the gain above mentioned. It has been my desire to furnish those who deal
in lumber of any kind with a set of tables that can implicitly be relied upon for correctness by both buyer and seller, and to do so I have spared no pains nor expense to render them perfect; and it is to be hoped that hereafter these will be preferred to the palpably erroneous tables which have hitherto been in use. If there is any truth in mathematics or dependence to be placed in the estimates given in diagrams, there cannot remain a particle of doubt of the accuracy of the results here given."
This \log rule gives practically the same results as does the Spaulding. It is not as carefully prepared, however, since the values given are not as consistent with the underlying principles of the rule. A graphic

Fig. 3. A graphic analysis of the Scribner Log Rule, based upon area in square feet inside bark at small end of logs. This diagram shows the following: (a) Top curve, total contents in board feet of logs of different diameters $16^{\prime} \mathrm{long}$, with no allowance made for taper. (b) Curve " k," volume in board feet remaining after 18% of the total volume has been allowed for sawdust (this allowance is about right for $\frac{1}{4}^{\prime \prime}$ saw-kerf). (c) Curve passing through origin and drawn parallel to bottom curve. (d) Bottom curve located by plotting volume in board feet for $16^{\prime} \operatorname{logs}$ of even inches in diameter inside bark as given by the Scribner Log Rule. The formula indicated by this analysis is as follows: $\left(.048 D^{2}-3\right) L=B . M .=$ volume in toard feet. This formula is almost identical with the one obtained for the Spaulding log Rule. It does not apply, however, to diameters below $14^{\prime \prime}$ or above $75^{\prime \prime}$. No formula can be written for the Scribner Log Rule that will fit all values given, due to the inconsistency of the individual values of the rule.
analysis of it is given in Fig. 3, which shows the fundamental principles upon which it is based, and which are the same as for the Spaulding rule. The formula indicated by the analysis shown in Fig. 3 is $\left(.048 D^{2}-3\right) L=$ B. M. $=$ volume in board feet, which is practically the same as for the Spaulding Log Rule, the only difference being in the constant " 3 ". Fig. 4 shows how closely this formula fits the rule.

Small logs will invariably overrun this scale, and to a slightly greater extent than for the Spaulding Log Rule, since the constant shown by the formula is " 3 "' instead of " 2 '". Intermediate logs will hold up the

scale, fall below or wo abowe larerly depending upon the width of the saw-kerf and the average dimensions of the lomber sawed. Large logs will run higher than the intermediate sizes. due to the fare that the slab allowance is directly proportional to the volume plus a constant. The following deduction shows the total waste allowance of the Scribner rule expressed in per cont of total sawed out, as shown by the rule:
$\left(.048 D^{2}-3\right) L=$ B. M. $=$ Total sawed out as shown by the Scribner Log Rule.

$$
\begin{aligned}
\frac{.7854 D^{2}}{12} L & =\text { total contents }=.0655 D^{2} L \\
.0655 D^{2} L & -\left(.048 D^{2}-3\right) L=\text { waste }=\left[(.0655-.048) D^{2}+3\right] L \\
& =\left(.0175 D^{2}+3\right) L
\end{aligned}
$$

$100 \frac{\left(.0175 D^{2}+3\right) L}{\left.(.018 I)^{2}-3\right) L}=\%$ waste based on total sawed out as shown

$$
=100 \frac{.0175 D^{2}+3}{.048 D^{2}-3} .
$$

When $D=10^{\prime \prime}$, the waste allowance based on the total sawed out as shown by the Scribner Log Rule $=$ (Formula does not apply below 14").
When $D=20^{\prime \prime}$, the waste allowance $=61.8 \%$.
When $D=30^{\prime \prime}$, the waste allowance $=46.7 \%$.
When $D=40^{\prime \prime}$, the waste allowance $=42.0 \%$.
When $D=$ diameter in inches for very large logs, waste allowance $=36.5 \%$.

The Doyle Log Rule.

The Doyle Log Rule is used throughout the entire country and is the statute rule of Florida, Louisiana and Arkansas. It is constructed from the formula $\left(\frac{D-4}{4}\right)^{2} L=$ B. M., which is stated as follows:
Deduct $4^{\prime \prime}$ from the diameter of the \log as an allowance for slabs; square one quarter of the remainder and multiply the result by the length of the \log in feet. No mention is made in this rule of a sawdust allowance. If four inches from the diameter of the small end is the slab allowance, the sawdust allowance must be the difference between the solid contents in board feet remaining after the slab allowance has been made and the contents shown by the rule. The determination of sawdust allowance follows:
$\left(\frac{I-4}{4}\right)^{2} L \underset{\text { Dovle rule }}{=}$, of $\log D$ inches in diameter at small end inside bark and L feet long.
$-\frac{.78 .54(D-4)^{2}}{12} L=$ volume in board feet of $\log D$ inches in diameter inside bark at small end L feet long with waste allowance for slabs but none for sawdust.
$.7854 \frac{(D-4)^{2}}{12} L-\left(\frac{D-4}{4}\right)^{2} L \underset{\text { inches in diameter and } L \text { feet long. }}{=}$ $\frac{\frac{.7854(D-4)^{2}}{12} L-\left(\frac{D-4}{4}\right)^{2} L}{.7854(I)-4)^{2}} L$

$$
=\frac{.295}{.0655}=4.5 \%
$$

$100=$ sawdust allowance for $\log I$) inches in diameter and L feet long expressed in per cent of volume in board feet left after slab allowance has been made

Therefore, the sawdust allowance for the Doyle Log Rule $=4.5 \%$ of the total volume left after $4^{\prime \prime}$ has been deducted from the diameter as an allowance for slabs. This sawdust allowance is correct in principle, since it is a definite per cent of the total volume after slabs have been accounted for. It is, however, entirely too small. The thinnest modern band saws take away at least 10% of the volume of the lumber sawed unless the product be large timbers, and the allowance of 4.5\% is not one-half as large as it should be for even one of these saws. The

Fig. 5. A graphic analysis of the Doyle Log Rule, based upon area in square feet inside bark at small end of logs. This diagram shows the following: (a) Top curve, total contents in board feet of logs of different diameters 16^{\prime} long with no allowance made for taper. (b) Next lower curve, volume in board feet remaining after an allowance of 4.5% has been made for sawdust. (4.5% of the total volume of logs, after slab allowance has been made, is the only portion of the waste allowance of the Doyle Log Rule that varies directly as the volume. Therefore, it is the only, part of the formula that varies directly as the amount of sawdust.) (c) Curve "k," values for volume in board feet after an allowance of 18% for sawdust has been made. This curve intersects the log rule at about $56^{\prime \prime}$, showing, that, at this point and above, the waste allowance which should cover slabs and sawdust is not sufficient to even cover the sawdust. The Doyle Log Rule, however, is correct in principle, but its values are ver" poorly chosen.
principle upon which the Doyle Log Rule is based is correct, however, since the slab allowance is proportional to the barked area and the sawdust allowance is proportional to the total volume left after the allowance for slabs has been made. But the allowance for slabs is absurdly large and that for sawdust is absurdly low. In short, the principle of the rule is correct, but the values are very poorly chosen. Fig. 5 shows a graphic analysis of the rule

A \log rule was used long brfore the Doyle rule came into existence, which gave the same results, and was stated as follows: Deduct $4^{\prime \prime}$ from the diameter for slabs, then, squaring the remainder, subtract one-fourth
for saw-kerf and the balance will be the contents of the $\log 12^{\prime}$ long, from which the others may be obtained by proportion. It would appear from this that a generous allowance for sawdust had been made, but as a matter of fact the apparent sawdust allowance is a part of the allowance already made for slabs. This is clearly illustrated in figures 6 and 7, when the above rule is applied. (Deduct $4^{\prime \prime}$ from the diameter for slabs and in Figures 6 and 7 we have $D-4=\mathrm{AB}$. Then, squaring the remainder $(D-4)$, we have $(D-4)^{2}=$ ABCD. Subtract 4

for saw-kerf, giving $\frac{3}{T}(D-4)^{2}$, which is the inside circle. The inscribed circle outside of this is equal to $.7854(D-4)^{2}$. It is apparent from this that $.7854(D-4)^{2}-\frac{3}{4}(D-4)^{2}$ is the only true portion of the diagram which could represent sawdust.) This rule amounts to the same thing as the Doyle Log Rule, but in statement is misleading and ambiguous.

The sawdust allowance as shown by Figures 6 and 7 in per cent of total contents after slab allowance has been made is as follows:

$$
\begin{aligned}
& \frac{.7854(D-4)^{2}-\frac{8}{1}(D-4)^{2}}{.7854(I)-4)^{2}} \times 100= \\
& \quad \frac{.0354(D)-4)^{2}}{.7854(I)-4)^{2}} \times 100=\frac{3.54}{.7854}=4.5 \%
\end{aligned}
$$

which is the same as shown by the Doyle Log Rule formula.

The following deduction will show the total waste allowance of the Doyle Log Rule for logs of different sizes expressed in per cent of total sawed out, as indicated by the rule:
$\left(\frac{D-4}{4}\right)^{2} L=B . M .=$ volume in board fect of $\log D$ inches in di-
$\frac{.7854 D^{4}}{12} L=$ total volume in board feet contained in $\log D$ inches in 12 diameter and L feet long. (No allowance for taper.)
$\frac{.7854 D^{2}}{12} L-\left(\frac{D-4}{4}\right)^{2} L=$ total waste allowance.
$\frac{\frac{.7854 D^{2}}{12} L-\left(\frac{D-4}{4}\right)^{2} L}{\left(\frac{D)-4}{4}\right)^{2} L} \times 100=$
$=\frac{.003 D^{2}+.5 D-1}{.0625 D^{2}-.5 D+1} \times 100$.

When $D=10^{\prime \prime}$, the waste allowance based on the total sawed out as shown by the Doyle Log Rule $=191 \%$.
When $D=20^{\prime \prime}$, the waste allowance $=63.8 \%$.
When $D=30^{\prime \prime}$, the waste allowance $=39.5 \%$.
When $D=40^{\prime \prime}$, the waste allowance $=29.4 \%$.
When $D=50^{\prime \prime}$, the waste allowance $=23.8 \%$.
This waste allowance is obviously too high for small logs and too low for large ones. This is due to the fact that the slab allowance is too generous and the sawdust allowance too small. Small logs will invariably over-run the scale; intermediate logs will usually scale about right, since the large slab allowance makes up the shortage for sawdust; large logs will invariably under-run the scale, because the combined slab and sawdust allowance is too small for waste, though the actual slab allowance is too large for slabs alone.

The MCKonzic Log Rulc.

The MrKenzie Log Rule is based on mathematical principles and is designed to cover all conditions encountered in the manufacture of lumber from logs of various diameters and lengths. All factors influencing the total volume sawed out have been taken into consideration and treated separately. thus making the rule flexible to the varying conditions, both in milling operations and in the character of the timber.

The following factors which affect the mill output from logs of different sizes have been included:
(a) Slabs.
(b) Normal crook.
(c) Saw-kerf.
(d) Average dimensions of lumber sawed.
(e) Taper.
(f) Excessive taper in small logs.

The mathematical principles underlying the rule are as follows:
(a) The slab allowance is a function of the barked area and varies directly with it.
(b) Normal crook is also a function of the barked area, and varies directly with it the same as slabs.
(c) The sawdust allowance is a function of saw-kerf and average dimensions sawed at mill, and for any given saw-kerf and average dimensions the sawdust allowance should vary directly as the volume minus the slabs.
(d) Taper allowance equal to $e^{\prime \prime}$ in f^{\prime}. (f not to exceed 16 ${ }^{\prime}$.)
(e) Excessive taper in small logs offset by a constant.

Let $D=$ diameter in inches inside bark at small end.
Let $L=$ length of \log in feet.
Let $k=$ width of saw-kerf, in inches.
Let $w=$ average width of lumber sawed, in inches.
Let $t=$ average thickness of lumber sawed, in inches.
Let $C=$ constant.
Let $a=$ constant.
then $(D-a)=$ diameter of \log after an allowance for slabs and normal crook has been made. (Since slabs and normal crook both vary the same, they can be accounted for by the same constant, a.)

$$
\begin{aligned}
& \frac{\pi(D-a)^{2}}{4}=\begin{array}{c}
\text { area in square inches of small end of log after the } \\
\text { slab and normal crook allowance has been made. }
\end{array} \\
& \frac{\pi(D-a)^{2} L}{4}=\begin{array}{l}
\text { volume in units of } 1^{\prime \prime} \times 1^{\prime \prime} \times 12^{\prime \prime} \text { contained in } \\
\begin{array}{l}
\log L \text { feet long and } D \text { inches in diameter after } \\
\text { the slab and normal crook allowance has been }
\end{array} \\
\text { made. (Taper allowance to be made later.) }
\end{array} \\
& \frac{\pi(D-a)^{2} L}{4 \times 12}=\begin{array}{l}
\text { volume in units of } 1^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime} \text { or board feet } \\
\text { in log } L \text { feet long and } I) \text { inches in diameter after } \\
\text { slab and normal crook allowance has been made. }
\end{array}
\end{aligned}
$$

No allowance has, as yet, been made for sawdust. This allowance depends upon the width of saw-kerf and the average dimensions of
lumber to be sawed. The saw-kerf from one side and edge of an average board bears the same ratio to that board as the total sawdust from all boards does to the total volume after slab allowance has been made. This is true of all volume becoming sawdust, excepting saw-kerf amounting to $2 k(D-a)$, which should be considered as part of the slabs since it varies directly as the barked area, and is the sawdust formed in cutting the slabs.

$$
\begin{aligned}
& k(w+t+k) \frac{L}{12}=\begin{array}{c}
\text { volume of wood forming sawdust from each } \\
\text { average board. }
\end{array} \\
& (w+k)(t+k) \frac{L}{12}=\begin{array}{c}
\text { volume of sawdust plus volume of average } \\
\text { board. }
\end{array} \\
& \frac{k(w+t+k) \frac{L}{12}}{(w+k)(t+k) \frac{L}{12}}=\frac{k(w+t+k)}{(w+k)(t+k)}=\begin{array}{c}
\text { fractional part of wood, } \\
\text { necessary to make } \\
\text { average board, becom- } \\
\text { ing sawdust. }
\end{array}
\end{aligned}
$$

This ratio of sawdust to average board plus sawdust holds for volume of logs minus allowance for slabs.
$\left[1-\frac{k(w+t+k)}{(w+k)(t+k)}\right]=\begin{gathered}\text { fractional part of log, after slab allow- } \\ \text { ance is made, which becomes lumber. }\end{gathered}$
Therefore, $\left[1-\frac{k(w+t+k)}{(w+k)(t+k)}\right] \pi \frac{(I)--k)^{2}}{48} . \quad L=$ volume in
board feet of lumber of average dimensions from $\log D$ inches in diameter at small end inside the bark and L feet long, when sawkerf is k inches wide.

A constant $C=$ to a few board feet, when added to this formula has a compensating effect for the excessive taper in small logs. Since most small logs sawed are the top logs from medium or large sized trees, they have an excessive taper which can not be accounted for by a uniform taper allowance applied to the whole tree. Therefore, this constant, which in all cases will be very small (not expeeding 10 board feet) is applied and its effect on large logs is negligible, but on small ones it will play an important part in eliminating an accumulative error in total sawed out at the mill.

Fig. 8. A graphic analysis of the McKenzie Log Rule, based upon area in square feet inside bark at small end of logs. This diagram shows the following: (a) Top curve, total contents in board feet of logs of different diameters 16 ' long with taper allowance of $1^{\prime \prime}$ in 8^{\prime}. (b) Next lower curve, volume in board feet remaining after an allowance for slabs has been made. (c) The log rule curve for ${ }^{\frac{1}{2} \prime \prime}$ saw-kerf, showing volume in board feet after an allowance for slabs and sawdust has been made. (The allowance for slabs in this rule varies directly as the "barked" area, and that for sawdust directly as the volume minus slab allowance.) (d) Curve "k," position that the \log rule curve takes when the saw-kerf is $\frac{1}{4}$ " instead of z^{\prime} ". (e) Curve " k "' shows position of the \log rule curve for a $3^{\prime \prime}$ saw-kerf. The formula for this rule is as follows:

$$
\left[1-\frac{k(w+t+k)}{(w+k)(t+k)}\right] \frac{\pi(D-a)^{2}}{48} L+C=\text { B.M. }
$$

$k=$ width of saw-kerf, in inches..
$w=$ average width of lumber, sawed, in inches.
$t=$ average thickness of lumber sawed, in inches.
$\pi=3.1416$.
$D=$ average diameter inside bark, small end, in inches.
$a=$ constant.
$L=$ length of log, in feet.
$C=$ constant included to compensate for excessive taper in small logs.

The formula is:

(not making any allowance for shrinkage and surfacing; the complete formula with this allowance made is shown on page 52.) :

$$
\left[\begin{array}{c}
k(w+t+k) \\
(w+k)(t+k)
\end{array}\right] \frac{\pi(D-a)^{2}}{48} L+C=\text { B.M. }
$$

with a taper allowance of $e^{\prime \prime}$ in f^{\prime} to be applied when compiling a table. The section used should not be taken over 16^{\prime} long: 8^{\prime} is better.

Its Application.

The above formula when applied to conditions existing at the Red River Lumber Company's mill in Lassen County, California, gave results shown in the following table. The value of a determined at this mill is extremely small, due to the fact that slabs were cut very thin and edgings were graded as moulding stock, also to the fact that short lengths were cut from logs where taper was great enough to permit it. The formula was first applied to 16^{\prime} logs, thus getting the taper in $\mathbf{1 6}^{\prime}$ included with the slabs. Volumes in board feet of logs of other lengths were then figured with a taper allowance of $1^{\prime \prime}$ in 8^{\prime}.

Table 1. The McKenzie Log Rule, based upon the following formula:

$$
\left[1-\frac{k(w+t+k}{(w+k)(t+k)}\right] \frac{\pi(D-a)^{2}}{48} L+C=\text { B.M. }
$$

Where $\quad k=$ saw-kerf $=\frac{1}{8}{ }^{\prime \prime}$.
Where $\quad k=$ average width of lumber $=12^{\prime \prime}$.
Where $\quad t=$ average thickness of lumber $=5 / 4^{\prime \prime}$.
Where $\quad D=$ average diameter of \log inside bark, small end, in inches.
Where $\quad a=1^{\prime \prime}$.
Where $\quad L=$ length of \log in feet.
Where $\quad C=2=$ constant allowed for excessive taper occurring in small logs.
Where B. M. = volume in board feet.
Where $\quad \pi=3.1416$.
With these values substituted, the formula becomes $.942(D-1)^{2}$ $+2=\mathrm{B}$. M. for $16^{\prime} \operatorname{logs}$.
Table based upon 16^{\prime} logs. Taper allowance of $1^{\prime \prime}$ in 8^{\prime} made for other lengths.
TABLE 1.

TABLE I-Continued.

TABLE I-Continued.

TABLE 1－Continued．

枵	\square	区			
	8		\％		
	6				
	8				
	$\stackrel{8}{8}$				
	＊				\％8880
	8				
	̛ㅇㅇ			\％¢0¢	
	$\overline{6}$				
	8				
	8				
	$\stackrel{\circ}{\circ}$				
	is				
	¢				
			かのロニッチン		

TABLE I-Continued.

TABLE I-Continued.

TABLE I-Continued.

TABLE I-Continued.

A COMPARISON OF THREE DIFFERENT TYPES OF LOG RULESS.

There are three distinct types of log rules now in general use. They are as follows: (a) Rules with a waste allowance varying directly as the barked area of the \log and the volume of the \log after the barked area allowance is made. (b) Rules with a waste allowance varying directly as the total volume of the \log alone. (c) Rules with a waste allowance varying directly as the total volume of the \log plus a constant.

When $\quad D=$ diameter at small end inside bark in inches.
When $\quad L=$ length of \log in feet.
When $\quad a=$ constant (in inches).
When $\quad \pi=3.1416$.
When $\quad c=$ constant with limits of 0 and 1.
When B. M. = volume in board feet of manufactured product, the three types may be expressed by these formulee:
(a) $\quad(1-c) \frac{\pi(D-a)^{2}}{4 \times 12} L=$ B.M.
(b) $(1-c) \frac{\pi D^{2}}{4 \times 12} L=\mathrm{B} . \mathrm{M}$.
(c)

$$
\left[(1-c) \frac{\pi I^{2}}{4 \times 12}-l\right] L=\mathrm{B} . \mathrm{M} .
$$

Note: The above formulæ are special cases of

$$
\left[(1-c) \frac{\pi(D-a)^{2}}{4 \times 1 \underline{2}}-b\right] L=\text { B.M. }
$$

In formula (a) the constant b equals zero, and the constant a has a positive value. Therefore, the curve $(1-c) \frac{\pi I^{\prime 2}}{4 \times 12} L$ has been moved in a horizontal direction a units to the right of the origin.

In (b), $a=0$, and $b=0$, or the curve maintains its normal position.
In (c). $a=0$, and b has a positive value, or the curve has been moved in a vertical direction b units.

None of the log rules analyzed had values for both a and b such that one of them could not be easily eliminated. The Universal Log Rule, for instance, reduces to the following formula:

$$
\left[(1-.29) \frac{\pi(D-1.591)^{2}}{4 \times 1 \because}-.1325\right] I=\mathrm{B} . \mathrm{M} .
$$

The constant $b=1325$ is so small that its effect upon the \log rule is negligible. (1-.20) $\frac{\pi(I)-1.6)^{2}}{4 \times 12} L=$ B. M. gives values for this rule within 2 board feet, and is the formula listed below.

The following is a comparison of log rules which may be expressed in the form:

$$
(1-c) \frac{\pi(D-a)^{2}}{4 \times 12}-L=\mathrm{B} . \mathrm{M}
$$

Note: The constant c is the fractional part of the log becoming sawdust after an allowance of a inches from the diameter has been made for slaths. It can be expressed in per cent by multiplying by 100 , or moving the decimal point two places to the right. (1 - c) in like manner is the fractional part allowed for the manufactured product.

Champlain :

$$
(1-.20) \frac{\pi(D-.8)^{z}}{4 \times 12} L=\text { B.M. }
$$

Boughman Rotary Saw: (Original values slightly erratic)

$$
(1-.19) \frac{\pi(I)-.87)^{2}}{4 \times 12} L=\text { B.M. }
$$

Boughman Band Saw: (Original values slightly erratic)

$$
(1-.10) \frac{\pi(D-1)^{2}}{4 \times 12} L=\text { B.M. }
$$

Wilson: (Original values slightly erratic)

$$
(1-.193) \frac{\pi(D-1)^{2}}{4 \times 12} L=\mathrm{B} . \mathrm{M}
$$

Carey: (Original values slightly erratic)

$$
(1-.193) \frac{\pi(D-1)^{2}}{4 \times 12} L=\text { B.M. }
$$

Baxier:

$$
(1-.33 S) \frac{\pi(I)-1)^{2}}{4 \times 12} L=\mathrm{B} . \mathrm{M}
$$

Click: (Original values slightly erratic)

$$
(1-.236) \frac{\pi(I)-1.25)^{2}}{4 \times 12} I=\text { B.M. }
$$

British Columbia:

$$
(1-.273) \frac{\pi(D-1.5)^{2}}{4 \times 12} L=\mathrm{B} . \mathrm{M}
$$

Universal:

$$
(1-.20) \frac{\pi(D-1.6)^{2}}{4 \times 12} L=\text { B.M. }
$$

International :

$$
(1-.16) \frac{\pi(D-1.62)^{2}}{4 \times 12} L=\text { B.M. }
$$

(Applied to 4^{\prime} sections with taper allowance of $1^{\prime \prime}$ in 8^{\prime}, and constructed for ${ }_{8}^{\prime \prime \prime}$ saw-kerf.)

Preston:

$$
\begin{aligned}
& (1-.20) \frac{\pi(D-1.75)^{2}}{4 \times 12} L=\text { B.M. } \quad \text { (Small logs) } \\
& (1-.20) \frac{\pi(D-1.5)^{2}}{4 \times 12} L=\text { B.M. } \quad \text { (Large logs) }
\end{aligned}
$$

Doyle:

$$
(1-.045) \frac{\pi(I)-4)^{2}}{4 \times 12} L=\text { B.M. }
$$

McKenzie:

$$
\left[1-\frac{k(w+t+k)}{(u+k)(t+k)}\right] \frac{\pi(I)-a)^{2}}{4 \times 12} L+C=\text { B. М. }
$$

Where $k=$ saw-kerf in inches.
Where $t=$ average thickness of lumber sawed, in inches.
Where $w=$ average width of lumber sawed, in inches.
Where $a=$ constant.
Where $C=$ constant included to compensate for excessive taper in small logs.
To be applied to 8^{\prime} sections with taper allowance of $e^{\prime \prime}$ in f^{\prime}.
It will be observed that of the above rules the Doyle and the Baxter are the two extremes. The Doyle rule has an enormous slab allowance with extremely small allowance for sawdust, (4.5%) ; where the Baxter rule has a small slab allowance and a very large allowance for sawdust, (33.8%).

Log rules of this form are correct in principle, and can be adapted to conditions existing at different mills, and to the character of the timber in different localities. The sawdust allowance, however, should not be fixed, but should depend upon the width of saw-kerf and the average dimensions of the lumber. The slab allowance should also be flexible, and should be determined by the timber to be sawed. Allowances for taper, excessive taper in small logs, shrinkage, etc., can be applied when making up a table based upon

$$
\quad(1-c) \frac{\pi(D-a)^{2}}{4 \times 12} L=\text { B.M. }
$$

This type of \log rule can be represented diagramatically by drawing concentric circles of diameters D and ($D-a$) respectively. The difference between the two rings will represent slab allowance. Draw a sector of the small circle with angle equal to $c \times 360^{\circ}$. This will represent the sawdust allowance.
The following is a comparison of \log rules which may be expressed in the form:

$$
(1-r) \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

Constantine:

$$
(1-0) \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

Saco River: (Original values slightly erratic)

$$
(1-.276) \frac{\pi I)^{2}}{4 \times 12} L=\text { B.M. }
$$

Derby : (Original values slightly erratic)

$$
(1-.279) \frac{\pi I)^{2}}{4 \times 12} L=\text { В.М. }
$$

Square of Three-quarters:

$$
(1-.283) \frac{\pi D^{2}}{4 \times 12} L=\mathrm{B} . \mathrm{M}
$$

Partridge: (Original values slighty erratic)

$$
(1-.312) \frac{\pi I^{2}}{4 \times 12} L=\text { B.M. }
$$

Vermont:

$$
(1-.363) \frac{\pi D^{2}}{4 \times 12} L=\text { B.м. }
$$

Note: This rule gives the solld contents in board feet of the largest square timber contained in a $\log D^{\prime \prime}$ in diameter inside bark at small end, and when divided by 12 , becomes the formula for the Inscribed Square Rule, which actually gives the cubic contents of the largest square timber that can be sawed from a log of known length and diameter.

Stillwell: (Original values erratic)

$$
(1-.368) \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

Ake:

$$
(1-.376) \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

Square of Two-Thirds:

$$
(1-.435) \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

Note: This formula, when divided by 12, is supposed to give, but does not give, the number of cubic feet of square timber that can be sawed from a $\log D^{\prime \prime}$ in diameter at middle point inside bark. After the division by 12 is made, it is called the Two-Thirds Rule.

Orange River:

$$
(1-.491) \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

Cumberland River:

$$
(1-.548) \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

It is obvious that the Constantine rule has no allowance for either slabs or sawdust, and that all log rules which can be expressed in this form have a total waste allowance which is directly proportional to the total volume of the log, (taper not taken into consideration). The two extremes are the Constantine and the Cumberland River. The former with no allowance for waste whatever and the latter with an allowance of 54.8%.

There can not exist for different sized logs a constant ratio between volume sawed out at mill and volume in board feet as shown by a \log rule of the above form. The principle is incorrect.

$$
(1-c) \frac{\pi I^{2}}{4 \times \frac{12}{12} L=\text { B.M. can be represented diagramatically by }}
$$

drawing a circle diameter D and then a sector of that circle with angle at center equal to $c \times 360^{\circ}$. The area of the sector will represent the total waste allowance and the remaining area the lumber product.

The following is a comparison of \log rules which may be expressed in the form:

$$
\left[(1-c) \frac{\pi D^{2}}{4 \times 12}-b\right] L=\mathrm{B.M}
$$

Bangor: (Original values slightly erratic)

$$
\left[(1-.258) \frac{\pi D^{2}}{4 \times 12}-.5\right] L=\text { B.M. }
$$

Boynton: (Original values erratic)

$$
\left[(1-.350) \frac{\pi D^{2}}{4 \times 12}-.67\right] L=\text { B.M. }
$$

Parsons: (Original values erratic)

$$
\left[(1-.246) \frac{\pi D^{2}}{4 \times 12}-1\right] L=\mathrm{B.M}
$$

Warner: (Original values erratic)

$$
\left[(1-.466) \frac{\pi I^{2}}{4 \times 12}-1\right] L=\mathrm{B} . \mathrm{M}
$$

Spaulding: (Original values slightly erratic)

$$
\left[(1-.266) \frac{\pi I)^{2}}{4 \times 12}-2\right] L=\mathrm{B.M.}
$$

Hannah: (Original values very erratic)

$$
\left[(1-.266) \frac{\pi I^{2}}{4 \times 12}-2\right] L=\text { B. } \mathrm{M} .
$$

Applies approximately to logs from $12^{\prime \prime}$ to $42^{\prime \prime}$ in diameter. This rule is very poorly constructed.

Wilcox: (Original values erratic)

$$
\left[(1-.3 \not 0) \frac{\pi I)^{2}}{4 \times 12}-2\right] L=\text { B.M. }
$$

Finch and Apgar: (Original values very erratic)

$$
\left[(1-.280) \frac{\pi D^{2}}{4 \times 12}-2.5\right] L==\text { B.MI. }
$$

Ropp:

$$
\left[(1-.236) \frac{\pi D^{2}}{4 \times 12}-3\right] L=\text { B.M. }
$$

Scribner: (Original values very erratic)

$$
\left[(1-.266) \frac{\pi D^{2}}{4 \times 12}-3\right] L=\text { B.M. }
$$

Applies approximately to logs from $14^{\prime \prime}$ to $75^{\prime \prime}$, inclusive, in diameter. This rule is very poorly constructed.

Favorite: (Original values erratic)

$$
\left[(1-.285) \frac{\pi D^{2}}{4 \times 12}-3\right] L=\text { B.M. }
$$

Maine: (Original values slightly erratic)

$$
\left[(1-.222) \frac{\pi D^{2}}{4 \times 12}-.67\right] L=\text { B.M. }
$$

(For small logs, $6^{\prime \prime}$ to $15^{\prime \prime}$, inclusive.)

$$
\left[(1-.222) \frac{\pi)^{2}}{4 \times 12}-2\right] L=\text { B.M. }
$$

(For $\log 16^{\prime \prime}$ to $48^{\prime \prime}$, inclusive.)

Herring: (Original values slightly erratic)

$$
\left[(1-.392) \frac{\pi I)^{2}}{4 \times 12}-1\right] L=\mathrm{B} . \mathrm{M} .
$$

(Small logs up to $30^{\prime \prime}$.)

$$
\left[(1-.313) \underset{+1)^{2}}{+12}-5.5\right] L=\mathrm{B} . \mathrm{M} \mathrm{I}
$$

(For logs from 30" to $42^{\prime \prime \prime}$, inclusive.)
Dusenbury: (Original values slightly erratic)
Practically the same as the Herring Log Rule.
Rules of this form will usually give a large per cent of mill overrun for small logs, due to the presence of the comstant b. Intermediate logs will run below, hold up the scale or overrun, all depending upon
the value of c in the rule used and the width of the saw-kerf. The effect of the constant b becomes small for intermediate sized logs, and is practically negligible for large ones. Large logs will run higher in per cent of mill overrun than the intermediate, since the slab allowance in this type of \log rule increases directly as the volume of the \log plus a constant. The principle is incorrect.

$$
\left[(1-c) \frac{\pi D^{2}}{4 \times 12}-b\right] L=\text { B.M. can be represented diagramatically }
$$

by drawing two concentric circles, the larger one with diameter D and the smaller one with diameter sufficient to allow for b board feet; then drawing a sector forming an angle of $c \times 360^{\circ}$ at the center. The area of the sector and the small circle will represent the waste allowance for slabs, sawdust, etc., while the remaining area will be the lumber product.

MISCELLANEOUS LOG RULES.

The Chapin, Northwestern, White and Ballon log rules have no definite underlying principles.

The Drew and the Forty-five were found to be of the form

$$
[1-(c-c D)] \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

Where $c=$ constant less than 1 and greater than 0.
Where $e=$ constant much smaller than c and greater than 0 .

Their formulæ are as follows:

The Forty-five rule:

$$
[1-(.496-.00763 I)]]_{4 \times 12}^{\pi I^{2}} L=\text { B.M. }
$$

The Drew Rule:

$$
[1-(.450-.003 D)] \frac{\pi D^{2}}{4 \times 12} L=\text { B.M. }
$$

In these rules the allowance for total wastage when expressed in per cent of the total contents of the log, taper not considered, decreases uniformly as the diameter increases. When $c D=c$, there is no allowance for wastage whatever. The Forty-five Log Rule allows for no wastage in logs $65^{\prime \prime}$ in diameter and shows more volume for logs over $65^{\prime \prime}$ than they actually contain. The Drew rule also shows a uniformly decreasing per cent of wastage, and for logs $150^{\prime \prime}$ in diameter the waste allowance becomes zero. The principle of these rules is absolutely incorrect.

LOG RULES BASED ON STANDARDS.

Any log rule, constructed to show volume in board feet of lumber contained in logs of various lengths and diameters, which is based upon definite principles, may be reduced to what is called a standard \log rule. The only difference between the ordinary \log rule and its unlimited number of standards is in the unit of measure. A \log of any specificd dimensions may be chosen as the unit of measure, and so long as the underlying principles of both the standard and the rule expressing values in board feet are the same, there will always exist a definite relation between them and the one may be expressed in terms of the other by multiplying by a constant.

When $d=$ Diameter in inches of the standard \log and
$l=$ Length in feet of the standard log,
\log rules of the form $(1-c) \frac{\pi(D-a)^{2}}{4 \times 12} L=$ B.M.
become $\frac{(D-a)^{2} L}{(d-a)^{2} l}=V$, in standards.
\log rules of the form $(1-c) \frac{\pi D^{2}}{4 \times 12} L=$ B.M.

$$
\text { become } \frac{D^{2} L}{d^{2} l}=V \text {, in standards. }
$$

\log rules of the form $\left[(1-c) \frac{\pi D^{2}}{4 \times 12}-b\right] L=$ B.M.

$$
\text { become } \frac{\left(D^{2}-x\right)}{\left(l^{2}-\varepsilon\right) l}=V \text {, in standards. }
$$

All standard \log rules now in use are based upon $\frac{D^{2} L}{d^{2} l}=$ Vol., in standards. Therefore, any one of them may be reduced to the form $(1-c) \frac{\pi D^{2}}{4 \times 12} L=$ B.M., since $\frac{D^{2} L}{d^{2} l} \times$ Const. $=(l-c) \frac{\pi D^{2}}{4 \times 12} L$. Furthermore, it is evident that all standard rules of the same form bear a constant relation the one to the other, and any number of units of a certain standard rule may be reduced to units of any other standard of the same form by multiplying by the proper constant. For example, the Nineteen Inch Standard Rule, $\left(\frac{I^{2} L}{19^{2} \times 13}=\mathrm{V}\right.$, in standards $)$, may be applied to a large number of logs of different sizes, and the argregate scale of these logs then given in $19^{\prime \prime}$ standards, may be reduced to Blodgett, cube standards, etc., or to any of the following log rules expressing results in board feet: Constantine, Saco River, Derby,

Square of Three-quarters, Partridge, Vermont, Stillwell, Ake, Square of Two-thirds, Orange River, or Cumberland River, by multiplying the aggregate by the proper constant. The result in every case will be precisely the same as though the logs were scaled separately by each of the rules. If, however, it is desired to reduce the aggregate scale of these logs now expressed in standards or in board feet, as the case may be, to board feet as shown by the Doyle Log Rule, for instance, the problem is impossible. There is no way of making the reduction. The logs will have to be scaled in accordance with the principles of the Doyle Log Rule in order to get such results. If only a single log were in question instead of a number of different sizes, it would be very easy to make such a reduction, but since there is no common ratio existing between the Doyle Log Rule (also other rules of that form) and the Nineteen Inch Standard (and others of its form) for logs of all sizes, the reduction can not be applied to more than one \log or set of logs of equal diameters.

It is folly to compare results obtained by two logs rules of different forms as applied to logs of various sizes. It is evident that a comparison of the formule of such rules would reveal a great deal more. Values shown by \log rules of different forms are not comparable, since their underlying principles are different. Any comparison made of such values only lead to confusion and really do more harm than good.

The following will illustrate how the Nineteen Inch Standard Rule may be reduced to other standards and also to any log rule giving values in board feet which is of the same form :
Given: The Nineteen Inch Standard Rule $\frac{D^{2} L}{19^{2} \times 13}=V$, in 19" standards, and given: The Blodgett rule $\frac{D^{2}}{16^{2}} L=V$, in Blodgett standards, to find the common reducing factor c :

$$
\begin{aligned}
\frac{D^{2} L}{19^{2} \times 13} \times c & =\frac{D^{2} L}{16^{2}} \\
\frac{c}{19^{2} \times 13} & =\frac{1}{16^{2}} \\
c & =\frac{19^{2} \times 13}{16^{2}}=18.33
\end{aligned}
$$

Therefore, if a log or any number of logs of different sizes have been scaled by the Nineteen Inch Standard Rule, the results may be expressed in Blodgett standards by multiplying hy 18.33 , which is the number of Blodgett standards contained in a Nineteen Inch standard. The ratio holds constant regardless of the size of the logs.

In like manner, the reducing factors for all other standard rules may be obtained.
Given: The Ninetcen Inch Standard Rule $\frac{D^{2} L}{19^{2} \times 13}=V$, in standards, and the Vermont rule $(1-.363) \frac{\pi I^{2}}{4 \times 1 \overline{2}} L=$ B.M. in board feet.

To find how many board feet as shown by the Vermont rule are equivalent to a standard of the Nineteen Inch rule:

$$
(1-.363) \frac{\pi 19^{2}}{48} \times 13=195.5
$$

Therefore, 195.5 board feet as shown by the Vermont rule equals one standard of the Ninteen Inch Standard Rule. This relation holds for all sized logs. In like manner, reducing factors for the Constantine, Saco River, Derby, Square of Three-quarters, Partridge, Stillwell, Ake, Square of Two-thirds, Orange River and Cumberland River rules may be obtained. All rules of the above form have definite reducing factors which apply to all logs, regardless of size, and to any aggregate scale representing any number of logs.

Given: The Nineteen Inch Standard Rule $\frac{D^{2} L}{19^{2} \times 13}=V$, in standards, to find a \log rule equivalent to it when one standard $=200$ board feet:

$$
\begin{aligned}
& (1-c) \frac{\pi 19^{2}}{4 \times 12} \times 13=200 \\
& 1-c=\frac{200 \times 48}{\pi \times 19^{2} \times 13}=.650 \\
& \quad c=.350
\end{aligned}
$$

Therefore: $(1-.350) \frac{\pi D^{2}}{4 \times 12} L=B . M$. is an equivalent rule for the Nineteen Inch Standard when a standard unit is equal to 200 board feet. In like manner equivalent rules for other standard rules may be obtained when the value of the unit is given in board feet.

For instance, the Blodgett rule allows 10 board feet for the equivalent of one standard, and the resulting rule which is equivalent to the Bodgett under these conditions is

$$
(1-.405) \frac{\pi I^{2}}{4 \times 12} L=\text { B.M. }
$$

(1-.423) $\frac{\pi D^{2}}{4 \times 12} L=$ B.M. is the equivalent for the cube rule when its standard unit $=12$ board feet.

It must be borne in mind that \log rules of the form

$$
(1-c) \frac{\pi D^{2}}{4 \times 12} L=\mathrm{B} . \mathrm{M} .
$$

are very poor rules for measuring the number of board feet of lumber that can be sawed from logs of different sizes, and that the three distinct types of rules disenssed under the heading "A Comparison of Three Different Types of Log Rules' can have no common reducing factor for
logs of different sizes, since the underlying principles are not the same. In the case of the standard rule based upon $\frac{D^{2} L}{d^{2} l}=V, V$ is directly proportional to the square of the diameter of the \log and also directly proportional to its length, whereas a log rule based upon correct principles has the volume in board feet vary directly as the diameter minus a constant squared, and directly as the length, with a taper correction applied to at least 8^{\prime} sections.
Standard \log rules based upon $\frac{D^{2} L}{d^{2} l}=V$ are, however, excellent rules where a measurement proportional to the total contents of the \log is desired. Such measures are applicable to logs which are to be made into pulp or whenever the total contents of the log is to be used. These rules do not take taper into consideration. They can be reduced to cubic feet by multiplying by a constant.

THE TRANSFORMATION OF VOLUME TABLES BASED UPON A GIVEN LOG RULE TO VOLUME TABLES BASED UPON OTHER RULES.

Volume tables constructed to show the number of board feet contained in trees of different merchantable lengths and diameters breasthigh, and based upon a \log rule of the form

$$
(1-c){ }_{4 \times 12}^{\pi(I)-a)^{2}} L=\mathrm{B} . \mathrm{M}
$$

can be transformed to tables based upon other rules of the same form where the value of the constant a is the same. If the value of a is different in the rule to which the values are to be reduced, there is no way of accomplishing the transformation. For example, tables based upon the Baxter rule can be transformed to tables based upon the Boughman Band Saw rule by dividing each value in the former table by ($1-.338$) and multiplying by $(1-.10)$. But tables based upon the Baxter rule cannot be trausformed to ones based upon the Doyle rulc, or on any other rule of that form where a is not the same as in the Baxter rule, or to forms where a does not enter, unless the average diameter of all portions of the bole is known thus making it possible to find the value of D for all logs in the tree.

Volume tables based upon rules of the form $(1-c) \frac{\pi D^{2}}{4 \times 12} L=$ B.M. nnd also upon the form $\left[(1-c) \frac{\pi l^{2}}{4 \times 12}-b\right] L=$ B.M. can be easily transformed from the one to the other. For example, a volume table based upon the Spaulding Log Rule, showing the average volume in board feet of trees of different diameters breasthigh and merchantable lengths can be transformed to a table based upon the Ropp rule by adding twice the average merchantable length shown in the table to each average value, and then dividing by ($1-.266$) and multiplying by ($1-.236$) and subtracting from each value thus obtained three times the merchantable length. The resulting table will then be based upon the Ropp rule, and the values therein will be the same as though the Ropp rule had been used for scaling the individual logs instead of the Spaulding rule. In like manner, any volume table based upon a \log rule of the form $\left[(1-c) \frac{\pi /)^{2}}{4 \times 12}-b\right] L=$ B.M., can be transformed to a volume table based upon any other log rule of that form.

Again, a volume table based upon a log rule of the above form can be transformed to a volume table based upon any \log rule of the form $(1-c) \frac{\pi J^{2}}{4 \times 12} L=$ B.M. by adding to each value in the table $b \times$ the merchantable length, and then dividing by ($1-c$) of the log rule upon which it is based and multiplying by the value of $(1-c)$ of the \log rule to which the transformation is to be made. For example: A volume table based upon the Spaulding Log Rule showing average volume in board
feet of trees of different diameters breasthigh and merchantable lengths can be transformed to a table based upon the Vermont rule by adding twice the average merchantable length to each of the values shown in the table, and then dividing the values thus obtained by ($1-.266$) and multiplying by ($1-.363$). The resulting table will then be based upon the Vermont rule. Should it be desirable to further transform the table to values in cubic feet of the Inscribed Square rule, divide all values by 12 . This last reduction will show the volume in cubic feet of the square timbers that can be sawed from trees of different merchantable lengths and diameters breasthigh.

The total number of cubic feet inside bark contained in logs of trees measured for the original volume table based on the Spaulding Log Rule can be obtained by adding twice the average merchantable length to each value in the table and then dividing by ($1-.266$) and dividing by 12 . This reduction gives the volume in cubic feet of the total logs in each tree, without the taper of the various logs originally measured being taken into consideration.

To recapitulate: All volume tables based upon

$$
(1-c) \frac{\pi(D-a)^{2}}{4 \times 12} L=\text { B.M. }
$$

can be reduced to any other table based upon the same form of \log rule where the constant a is the same as in the rule originally used in compiling the table.

All volume tables based upon rules of the form

$$
(1-c) \frac{\pi D^{2}}{4 \times 12} L=\text { B.M., or }\left[(1-c) \frac{\pi D^{2}}{4 \times 12}-b\right] L=\text { B.M. }
$$

can be reduced or transformed to volume tables based upon any \log rule of either of these forms, and in all cases the resulting tables will be the same as though the individual rules had been applied to the original data.

Any volume table based upon one of the following rules can be transformed to a volume table based upon any of the other rules here given: Constantine, Saco River, Derby, Square of Three-fourths, Partridge, Vermont, Inscribed Square (which is the Vermont rule divided by 12), Sillwell, Ake, Square of Two-thirds, Two-thirds rule (which is the Square of Two-thirds Rule divided by twelve), Orange River, Cumberland River, Bangor, Boynton, Parsons, Warner, Spaulding, Wilcox, Ropp, Favorite, Nineteen Inch Standard, New Hampshire (or Blodgett), the Cube Rule, Twenty-two Inch Standard, Twenty-four Inch Standard, Seventeen Inch Rule.

Note: The Hannah, Finch and Apgar, and Scribner rules have been omitted in the above list since their original values appear too erratic to be included. The maine. Herring and Insenbury also have been omitled, since each of these rules have separiate formula for small and large logs.

In like manner any volume table based upon

$$
(1-c) \frac{\left.\pi(D-)^{\prime}\right)^{2}}{4 \times 12} L=\mathrm{B} . \mathrm{M}
$$

can be transformed to other volume tables of the same form, provided the ronstant a is the same in rules under consideration.

The following tables illustrate how the transformations described above may be made:

Table 2. Average volume in board feet, as shown by the Spaulding Log Rule, contained in merchantable portion of immature western yellow pine trees of different merchantable lengths and diameters breast high.

TABLE 2.

Diameter breasthigh in tnches	Merchantable length (feet)							Diameter inside bark top log, inches	$\begin{aligned} & \text { Height } \\ & \text { of } \\ & \text { stump, } \\ & \text { feet } \end{aligned}$	Basis, number of trees
	70	80	90	100	110	120	130			
	Volume, based on the Spaulding Rule (bd. ft.)									
20	300	380	465	550				6.6	1.2	11
21	325	405	495	580				6.7	1.2	
22	350	435	530	630	730			6.7	1.2	39
23	380	475	570	680	780			6.8	1.2	
24	415	510	620	730	840			6.9	1.3	67
25	150	560	670	785	905			7.0	1.3	
28	490	605	725	845	975	1100		7.1	1.3	92
27		655	780	915	1050	1180		7.1	1.3	
28		710	845	980	1130	1270	1415	7.2	1.3	100
29			910	1060	1210	1365	1520	7.3	1.3	
30		.-.	980	1140	1300	1460	1630	7.4	1.3	65
31				1225	1395	1565	1750	7.5	1.3	
32				1310	1490	1675	1870	7.6	1.4	57
33			.-..-	1400	1585	1780	1990	7.7	1.4	
34				1495	1695	1900	2125	7.8	1.3	29
35					1800	2020	2255	7.9	1.3	
36					1910	2140	2400	8.0	1.4	27
37						2265	2550	8.2	1.4	
38						2395	2700	8.5	1.6	7
39						25.5	2850	9.0	1.5	
40						2660	3005	9.6	1.5	8
Total number of trees.										602

This table is based upon the original measurements of 502 trees.

Table 3. (A transformation of Table 2.) Average volume in board feet, as shown by the Ropp Log Rule, contained in merchantable portion of immature western yellow pine trees of different merchantable lengths and diameters breasthigh.

TABLE 3.

```Diam- eter breast- high in Inches```	Merchantable length (feet)							Diam-		
	70	80	90	100	110	120	130	eter   Inside bark top $\log$,	$\begin{aligned} & \text { Height } \\ & \text { of } \\ & \text { stump, } \\ & \text { feet } \end{aligned}$	Basis, number of trees
	Volume, based on the Ropp Log Rule (bd. ft.)							Inches		
20	248	322	402	481	----		--	6.6	1.2	11
21	274	348	433	512	----			6.7	1.2	
22	300	380	469	564	659	.---	----	6.7	1.2	39
23	331	421	511	616	710	------	----	6.8	1.2	
24	368	458	563	668	772	----	---	6.9	1.8	07
25	404	509	615	725	841	-	---	7.0	1.3	
26	446	556	672	787	913	1036	---	7.1	1.3	92
27		608	730	861	992	1118	-	7.1	1.3	
28		666	798	929	1076	1211	1353	7.2	1.3	100
29			874	1011	1159	1310	1463	7.3	1.3	
30			938	1045	1252	1410	1578	7.4	1.3	65
31				1182	1350	1520	1702	7.5	1.3	
32			---	1271	1450	1632	1829	7.6	1.4	57
33			-----	1335	1550	1745	1952	7.7	1.4	
34			-----	1464	1663	1868	2094	7.8	1.3	29
35					1771	1995	2230	7.9	1.3	
36					1800	2120	2378	8.0	1.4	27
37			-	-	-..----	2248	2535	8.2	1.4	
38						2.380	2690	8.5	1.5	7
39						2520	2850	9.0	1.5	
40						2630	3010	9.6	1.5	8
										502

This table was obtained by transforming the values in Table 2, based on the Spaulding Log Rule, to values shown here based upon the Ropp rule. The transformation was made in accordance with the underlying principles of both rules, and was accomplished as follows: To each value shown in Table 2 twice the merchantable length indicated at top of table was added. The new values thus obtained were divided by ( $1-.266$ ) and multiplied by ( $1-.236$ ), and three times the merchantable length subtracted. The resulting table is based upon the Ropp rule, and does not include any logs under $10^{\prime \prime}$ in diameter, since logs below this size have been automatically discarded by the Ropp rule formula, which gives small negative results for logs under $8^{\prime \prime}$ and small positive results for logs between $8^{\prime \prime}$ and $10^{\prime \prime}$. The negatives below $8^{\prime \prime}$ and the positives between an $8^{\prime \prime}$ and $10^{\prime \prime}$ will about neutralize, thus giving a table which does not include logs below $10^{\prime \prime}$ in diameter.

Table 4. (A transformation of Table 2.) Average values in board feet, as shown by the Vermont Log Rule, contained in merchantable portion of immature western yellow pine trees of different merchantable lengths and diameters breasthigh.

TABLE 4.

Diameter breasthigh in Inches	Merchantable length (feet)							Diameter inside bark toplog, inches	$\begin{aligned} & \text { Height } \\ & \text { of } \\ & \text { stump, } \\ & \text { feet } \end{aligned}$	Basis, number of trees
	70	80	90	100	110	120	130			
	Volume, based on the Vermont Rule (bd. ft.)									
20	882	409	E60	651				6.6	1.2	11
21	404	491	587	677			----	6.7	1.2	
22	426	517	617	721	825			6.7	1.2	39
23	452	552	652	764	868		---	6.8	1.2	
24	482	582	695	807	922			6.9	1.8	67
25	512	625	738	855	977		--	7.0	1.8	
26	547	665	786	908	1039	1164		7.1	1.8	92
27		708	834	969	1103	1232	-----	7.1	1.8	
28		755	890	1025	1172	1311	1454	7.2	1.3	100
29			954	1094	1242	1395	1546	7.3	1.8	
30			1008	1163	1320	1478	1641	7.4	1.8	65
31				1238	1403	1568	1746	7.5	1.3	
32				1812	1486	1663 :	1850	7.6	1.4	57
33			-----	1390	1568	1754	1954	7.7	1.4	
34				1471	1688	1850	2072	7.8	1.3	29
35					1754	1962	2182	7.9	1.3	
36					1850	2098	2310	8.0	1.4	27
37						2175	2440	8.2	1.4	
38						2287	2572	8.5	1.5	7
39						2400	2705	9.0	1.5	
40						2520	2835	9.6	1.6	8
Tota	number	trees								502

This table was obtained by transforming the values in Table 2, based upon the Spaulding Log Rule, to values shown here based upon the Vermont Rule. The transformation was made in the following manner: To each value shown in Table 2, twice the merchantable length indicated at top of table was added to each of the values. Each of the new values thus obtained was divided by ( $1-.266$ ) and multiplied by ( $1-.363$ ). The resulting values form the above table, and include all logs contained in the merchantable lengths. This table is the same as would have been obtained had the results been based directly upon the woods measurements.

Table 5. (A transformation of Table 2.) Average values in cubic feet as shown by the Inscribed Square Log Rule contained in the largest square timbers that can be sawed from the merchantable portion of immature western yellow pine trees of different merchantable lengths and diameters breasthigh.

TABLE 5.

Diameter breasthigh in Inches	Merchantable length (feet)							Diameter inside bark top log, inches	$\begin{aligned} & \text { Height } \\ & \text { of } \\ & \text { stump, } \\ & \text { feet } \end{aligned}$	Basts, number of trees
	70	80	90	100	110	120	130			
	Volume, based on the Inscribed Square Rule (cu. ft.)									
20	31.8	39.1	46.7	54.3				6.6	1.2	11
21	33.7	40.9	48.8	56.4				6.7	1.2	
22	35.5	43.1	51.1	60.0	68.7			6.7	1.2	89
23	87.6	46.0	54.3	63.6	72.3		----	6.8	1.2	
24	40.2	48.5	57.9	67.4	76.8		----	6.9	1.8	67
25	42.7	52.1	61.5	71.3	81.4			7.0	1.3	
26	45.6	55.4	65.5	75.7	88.5	97.0		7.1	1.8	92
27		59.0	69.5	80.7	92.0	102.7	-----	7.1	1.3	
28		62.9	74.2	85.5	97.7	109.3	121.1	7.2	1.8	100
29		----	79.4	91.2	108.6	116.2	128.8	7.8	1.3	
30			84.0	97.0	110.0	123.0	136.8	7.4	1.3	65
31				103.2	117.0	130.7	145.4	7.5	1.3	
32				109.3	123.8	188.7	154.0	7.6	1.4	57
33				115.8	130.7	146.1	162.8	7.7	1.4	
34				122.6	188.7	155.0	172.5	7.8	1.3	29
35					146.2	163.5	182.0	7.9	1.3	
36					154.2	172.3	192.5	8.0	1.4	27
37						181.2	203.2	8.2	1.4	
38						190.8	214.0	8.5	1.5	7
39						200.0	225.8	9.0	1.5	
40						210.0	236.0	9.6	1.5	8
Total number of										502

Values in this table are indirectly based upon the measurements necessary for a compilation of Table 2 . They were obtained by dividing values shown in Table 4 by the constant 12.

## THE TRANSFORMATION OF THE SCALE OF A NUMBER OF LOGS IN THE AGGREGATE, BASED UPON A GIVEN LOG RULE, TO THE SCALE OF THE SAME LOGS IN THE AGGREGATE, BASED UPON ANOTHER LOG RULE.

The total volume of a number of logs of various sizes as shown by a $\log$ rule of the form $(1-c) \frac{\pi(D-a)^{2}}{4 \times 12} L=$ B.M. can be transformed to the volume as would be shown by another $\log$ rule of that form where the constant $a$ is the same. For example: Should it be required to know the total volume in board feet of a trainload of logs of various sizes as would be shown by the Boughman Band Saw Rule when the aggregate scale based upon the Baxter Rule is known to be 320,000 board feet, the following steps are necessary: Divide 320,000 by ( $1-c$ ) of the Baxter rule, which is ( $1-.338$ ), and multiply by ( $1-c$ ) of the Boughman Band Saw Rule, which is ( $1-.10$ ). The result thus obtained which will be 435,000 is the same as would have been obtained had the Bowman rule been used for the original scale. Such transformations can not be made where the constant $a$ in the two rules in question are not the same. Had the trainload of logs been scaled by a rule of the form $(1-c) \frac{\pi D^{2}}{4 \times 12} L=$ B.M. it would not be possible to make such a transformation, but it would be possible to transform the total scale to a new total based upon another rule of the same form. For example: If a trainload of logs should scale 300,000 board feet by the Square of Three-quarters rule, and it should be required to find the aggregate scale according to the Inscribed Square rule, the following procedure is all that is necessary: Divide 300,000 by ( $1-.283$ ) and multiply by ( $1-.363$ ) and then divide by 12 . The final result, 32,000 cubic feet, is exactly the same as would have been obtained had the Inscribed Square rule been used for the original scale. In like manner, a transformation could have been made to a number of other rules of similar form.

Had the trainload of logs been originally scaled by a $\log$ rule of the form $\left[(1-c) \frac{D^{2}}{4 \times 12}-b\right] L=$ B.M., such as the Spaulding rule, a transformation to another rule of that form where $b$ is the same could be accomplished by dividing by $(1-c)$ of the formula used and multiplying by $(1-c)$ of the formula to which the transformation is to be made. But, in cases where the value of the constant $b$ is different in the log rules in question, no reduction can be made, unless the sum of the length of all the logs in the trainload be known. If the sum of all log lengths is known, it would then be possible to transform the total scale to other total scales based upon $\left[(1-c) \frac{\pi D^{2}}{4 \times 12}-b\right] L=$ B.M. or $(1-c) \frac{\pi D^{2}}{4 \times 12} L=$ B.M. whether the constant $b$ is the same or different in the rules in question. Had the trainload of $\log$ been
originally scaled by the Spaulding Log Rule, or any other rule of similar form, where $b$ has a value greater than 0 , the transformation of the total scale to a total based on a log rule of the form $(1-c) \frac{\pi D^{2}}{4 \times 12} L=$ B.M. would be impossible unless the sum of the lengths of all logs in the trainload be known. Suppose, for example, the aggregate scale of a trainload of logs was 250,000 boarl feet by the Spaulding Log Rule, and the sum of all log lengths in the load was 12,000 linear feet, and it was required to know the total scale when based upon the Square of Two-thirds rule, the following operations are all that would be necessary: Add to 250,000 twice the sum of all $\log$ lengths, which would be 24,000 , divide by ( $1-.266$ ) and multiply by ( $1-.435$ ). The resulting aggregate scale of the trainload of logs based on the Square of Two-thirds rule would then be 211,000 board feet, which is the same as would have been obtained had the Square of Two-thirds rule been originally applied.

## SUMMARY.

No $\log$ rule will give an accurate measure of the lumber content of logs of various sizes that fails to properly combine all the factors encountered in converting logs into lumber. These factors are the same for all species under all milling conditions. The value of the factors alone increases or decreases according to the species and method of sawing, but the number of factors remain constant. As a result of failing to recognize the factors that must be combined in devising a properly constructed $\log$ rule, by failing to employ all of them, or by combining them improperly, there is no accurate log rule in use applicable to variable milling conditions. Any log rule capable of becoming a standard measure and susceptible of correction for certain variable factors must recognize a slab allowance proportional to the barked area of the log, and a sawdust allowance expressed as a definite per cent of the total volume of all logs, not including slabs. The per cent for sawdust is dependent upon the width of the saw-kerf and average dimensions of lumber to be sawed. Other factors to be taken into account are taper, shrinkage, normal crook and excessive taper in small logs, but these are of less importance than the two cited above.

The following log rules are constructed with a total wastage allowance proportional to the total volume of the log, regardless of size-taper not considered:

Constantine, Saco River, Derby, Square of Three-quarters, Partridge, Vermont, Stillwell, Ake, Square of Two-thirds, Orange River, Cumberland River. These rules are incorrect in principle, therefore no correction is possible.

Another group of rules is derived by substituting a waste allowance proportional to total volume, plus a constant for logs of different sizestaper not considered. It would seem as though some effort had been made to correct the inaccuracy of the preceding group by adding a constant to compensate for waste occasioned by sawing logs of different sizes. The underlying principles of these rules are incorrect, however, and consequently their values cannot be properly adjusted. Such rules are the following:

Bangor, Boynton, Parsons, Warner, Spaulding, Hannah, Wilcox, Finch and Apgar, Ropp, Scribner, Favorite, Maine, Herring, Dusenbury.

Log rules with slab allowance varying directly as the barked area of logs of different sizes and with sawdust allowance directly as the volume after the slab allowance has been made are correct in principle, but are not necessarily correct measures. Rules of this type are as follows:

Champlain, Boughman's Rotary Saw, Boughman's Band Saw, Wilson, Carey, Baxter, Click, British Columbia, Universal, International, Preston, Doyle, McKenzie.

Of the preceding rules the Champlain, Universal, International and McKenzie are the only ones that are at all flexible to milling conditions and character of timber to be sawed. The Champlain and the Universal are the same, with the exception of the slab allowance, which in the case of the Universal is twice as great as for the Champlain. The sawdust allowance for both rules is made by allowing $\left(100-\frac{100}{1+k}\right)$ per cent of the volume of the $\log$ (taper not included) for sawdust. This
factor is correct for a gang saw with saws $k^{\prime \prime}$ thick and $1^{\prime \prime}$ apart, but does not apply to any other milling conditions. Taper is not taken into consideration by either of these rules. Both rules have a fixed slab allowance, and the sawdust factor is affected by saw-kerf alone.

The International Log Rule also has a fixed slab allowance, and the sawdust allowance is unaffected by the dimensions of the lumber to be sawed. The value of this factor has been worked out for different gauge saws, and is the same regardless of dimensions of the manufactured product. The rule has a fixed taper allowance of $\frac{1}{2}{ }^{\prime \prime}$ in $4^{\prime}$, and tables compiled in accordance with the rule are based upon $4^{\prime}$ sections.
Since the analysis proved that no log rule now in use is universally applicable, a rule has been prepared and designated the McKenzie rule, which may be made to apply accurately to any set of conditions and at all times be susceptible to proper corrections made necessary by modifications of local methods employed.

This rule, with no allowance made for shrinkage and surfacing, is shown on page 19, and for convenience may be written:

$$
\left[1-\frac{(w+k)(t+k)-w t}{(w+k)(t+k)}\right] \frac{\pi(D-a)^{2}}{4 \times 12} L+C=\text { B.M. }
$$

With an allowance for shrinkage and surfacing included, the rule complete becomes:

$$
\left[1-\frac{(w+c+k)(t+b+k)-w t}{(w+c+k)(t+b+k)}\right] \frac{\pi(D-a)^{z}}{4 \times 12} L+C=\text { B.M. }
$$

Where $b$ and $c$ in inches, represent these allowances in thickness and width, respectively.

## APPENDIX.

## How to Adjust the McKenzie Log Rule to Conditions Existing at Any Mill.

This can best be shown by assuming a set of conditions and then reducing the rule from its general form to a special form in accordance with whatever the limitations imposed may be. For example, assume. the following :

Mill output for period of three months:
$150,000 \mathrm{bd}$. ft. of $1^{\prime \prime} \times 3^{\prime \prime}$ cut $11 / 16^{\prime \prime} \times 31 / 8^{\prime \prime}$
$120,000 \mathrm{bd}$. ft. of $1^{\prime \prime} \times 4^{\prime \prime}$ cut $1116^{\prime \prime} \times 418^{\prime \prime}$
$180,(6) 0$ bd. ft. of $1^{\prime \prime} \times 6^{\prime \prime}$ cut $1116^{\prime \prime} \times 61^{\prime \prime} 8^{\prime \prime}$
$225,000 \mathrm{bd}$. ft. of $1^{\prime \prime} \times 8^{\prime \prime}$ cut $1116^{\prime \prime} \times 818^{\prime \prime}$
$700,000 \mathrm{bd}$. ft. of $1^{\prime \prime} \times 12^{\prime \prime \prime}$ cut $11 / 16^{\prime \prime} \times 121 / 4^{\prime \prime}$
$\left.\mathrm{a}^{\mathrm{N}}\right), 000 \mathrm{bd}$. ft . of $1^{\prime \prime} \times 14^{\prime \prime}$ cut $1116^{\prime \prime} \times 1+14^{\prime \prime}$
300,000 bd. ft. of $1^{\prime \prime} \times 16^{\prime \prime}$ cut $11 / 16^{\prime \prime} \times 161 / 4^{\prime \prime}$
$270,000 \mathrm{bd}$. ft . of $\mathrm{l}^{\prime \prime} \times 18^{\prime \prime}$ cut $1116^{\prime \prime} \times 181 / 4^{\prime \prime}$
$180,000 \mathrm{bd}$. ft. of $64^{\prime \prime} \times 8^{\prime \prime}$ cut $19 / 16^{\prime \prime} \times 81 \mathrm{~S}^{\prime \prime}$
$2 \pi, 000$ bd. ft. of $6 / 4^{\prime \prime} \times 10^{\prime \prime}$ cut $1916^{\prime \prime} \times 101 / 8^{\prime \prime}$
500.6 KNO bd. ft. of $64^{\prime \prime} \times 12^{\prime \prime}$ cut $1916^{\prime \prime} \times 121 / 4^{\prime \prime}$
300,000 bd. ft. of $64^{\prime \prime} \times 14^{\prime \prime}$ cut $19^{\prime} 16^{\prime \prime} \times 141 / 4^{\prime \prime}$
$275,60 \mathrm{bd}$. ft. of $6 / 4^{\prime \prime} \times 16^{\prime \prime}$ cut $19 / 16^{\prime \prime} \times 1614^{\prime \prime}$
$240,600 \mathrm{bd}$. ft . of $64^{\prime \prime} \times 18^{\prime \prime}$ cut $1916^{\prime \prime} \times 1814^{\prime \prime}$
GN.ONO bd. ft. of $2^{\prime \prime} \times 4^{\prime \prime}$ cut $21 / \mathrm{s}^{\prime \prime} \times 41.3^{\prime \prime}$
$45^{\circ}, 0,00 \mathrm{bd}$. ft . of $2^{\prime \prime} \times 6^{\prime \prime}$ cut $21 / \mathrm{s}^{\prime \prime} \times 61.8^{\prime \prime}$
225.cos bd. ft. of $2^{\prime \prime} \times 8^{\prime \prime}$ cut $218^{\prime \prime} \times 818^{\prime \prime}$
175,000 bd. ft. of $2^{\prime \prime} \times 10^{\prime \prime}$ cut $21 / 8^{\prime \prime} \times 101 / \mathrm{s}^{\prime \prime}$
200, , 00 bd . ft . of $2^{\prime \prime} \times 12^{\prime \prime}$ cut $218^{\prime \prime} \times 121 / 4^{\prime \prime}$
$210,400 \mathrm{bd}$. ft. of $3^{\prime \prime} \times 3^{\prime \prime}$ cut $31 / 8^{\prime \prime} \times 31 \mathrm{~B}^{\prime \prime}$
$2 \mathrm{O}, 0 \times 10 \mathrm{bid}$. ft . of $3^{\prime \prime} \times 6^{\prime \prime}$ cut $318^{\prime \prime} \times 61 / 8^{\prime \prime}$
$25) .0 \% \mathrm{bd}$. ft . of $3^{\prime \prime} \times 1 \mathrm{E}^{\prime \prime}$ cut $31 / 8^{\prime \prime} \times 1214^{\prime \prime}$
$300,000 \mathrm{bl}$. ft . of $4^{\prime \prime} \times 4^{\prime \prime}$ cut $418^{\prime \prime} \times 41 \mathrm{~s}^{\prime \prime}$
$1{ }^{\circ} \mathrm{O} .0 \mathrm{Km}$ bd. ft. of $4^{\prime \prime} \times 6^{\prime \prime}$ cut $41 / \mathrm{s}^{\prime \prime} \times 61 . \mathrm{s}^{\prime \prime}$
375.60 bd. ft. of $5^{\prime \prime} \times 8^{\prime \prime}$ cut $51 / 8^{\prime \prime} \times 81 / 8^{\prime \prime}$
180,000 bd. ft. of $6^{\prime \prime} \times 6^{\prime \prime}$ cut $63.16^{\prime \prime} \times 631 \mathrm{i}^{\prime \prime}$
120,000 bd. it. of $6^{\prime \prime} \times 8^{\prime \prime}$ cut $6316^{\prime \prime} \times 83316^{\prime \prime}$
$30,000 \mathrm{bd}$. ft. of $8^{\prime \prime} \times 12^{\prime \prime}$ ent $814^{\prime \prime} \times 1 \because 14^{\prime \prime}$
375,000 bd. ft. of $8^{\prime \prime} \times 16^{\prime \prime}$ cut $814^{\prime \prime} \times 1614^{\prime \prime}$
$100,000 \mathrm{bd}$. ft. of $12^{\prime \prime} \times 12^{\prime \prime}$ cut $121 / 4^{\prime \prime} \times 121 / 4^{\prime \prime}$

Width of saw kerf $=1 / 8^{\prime \prime}$
A verage taper (not including butt logs or top $\log s$ )
$=$ approx. $1 / 2^{\prime \prime}$ in $8^{\prime}$
Average thickness of slabs and edgings at small end of logs $=5 / 3^{\prime \prime}$ To determine a special form of

$$
\left[\begin{array}{ll}
(n+c+k)(t: b+k)-n t \\
(n+c+k)(t+b+k)
\end{array}\right] \frac{\pi(l)-a)^{2}}{4 \times 12} L+C=\text { B.M. }
$$

which will conform to the above milling conditions and character of timber.
(a) The determination of the average value of

$$
\begin{equation*}
\left[1-\frac{(w+c+k)(t+b+k)-u t}{(w+c+k)(t+b+k)}\right] \tag{A}
\end{equation*}
$$

For $1^{\prime \prime} \times 3^{\prime \prime}$ lumber cut $11 / 16^{\prime \prime} \times 31 / 8^{\prime \prime}$

$$
w=3, \quad c=1 / 8=.125, \quad k=1 / 8=.125
$$

$$
t=1, \quad b=1 / 16=.0625
$$

$$
(w+c+k)=3 .+.125+.125=3.25
$$

$$
(t+b+k)=1+.062+.125=1.187
$$

$$
(w+c+k)(t+b+k)=3.25 \times 1.187=3.86
$$

$$
w t=1 \times 3=3
$$

$$
\text { Then }(A)=1-\frac{3.86-3}{3.86}=1-.223=.777
$$

Thercfore $150,000 \mathrm{bd}$. ft. represents $77.7 \%$ of the original material, or $22.3 \%$ has been forfeited to sawdust, shrinkage and surfacing in manufacturing $1^{\prime \prime} \times 3^{\prime \prime}$ lumber, cut $1 / 16^{\prime \prime} \times 3^{\prime \prime} 1 / 8^{\prime \prime}$ when saw kerf $=1 / 8^{\prime \prime}$
$\frac{150,000}{.777}=193.000=$ the volume in bd. ft. of material actually used in producing $150,000 \mathrm{bd}$. ft. of $1^{\prime \prime} \times 3^{\prime \prime}$ lumber (not including slabs and edgings).
With simliar determinations made for all other dimensions of lumber cut, we have:
150.000 bd . ft. of $120.0 \times 10 \mathrm{bd}$. ft . of $1 \mathrm{~N},(\mathrm{xN}) \mathrm{bd}$. ft. of 22.5 .000 bd . ft . of
 $\delta \overline{0} 0 .(n 0)$ bd. ft. of $1^{\prime \prime} \times 14^{\prime \prime}$ cut $11116^{\prime \prime} \times 141 / 4^{\prime \prime}$ 300 , ( 0 ) 0 bd. ft. of $1^{\prime \prime} \times 16^{\prime \prime}$ cut $1116^{\prime \prime} \times 161 / 4^{\prime \prime}$
 $1 \mathrm{sN}), 00 \mathrm{bd}$. ft. of $64^{\prime \prime} \times 8^{\prime \prime}$ (.ut $1916^{\prime \prime} \times 818^{\prime \prime}$ $2 \pi 5,(0) 9$ bd. ft. of $6^{\prime \prime} 4^{\prime \prime} \times 10^{\prime \prime}$ cut $1916^{\prime \prime} \times 101 \mathrm{~s}^{\prime \prime}$
 $300,\left(\mathrm{kNOWm}\right.$. ft . of $6 \mathrm{~s}^{\prime \prime} \times 14^{\prime \prime}$ cut $1916^{\prime \prime} \times 1+14^{\prime \prime}$ $2 \pi \overline{0}, 000 \mathrm{bd}$. ft . of $64^{\prime \prime} \times 16^{\prime \prime}$ cut $1916^{\prime \prime} \times 16^{\prime \prime} 4^{\prime \prime}$ $240,\left(\mathrm{KNO}\right.$ bil. ft . of $\mathrm{G}_{5} 4^{\prime \prime} \times 18^{\prime}$ cut $1916^{\prime \prime} \times 1814^{\prime \prime}$ G10, 000 bd . ft . of $2^{\prime \prime} \times 4^{\prime \prime}$ cut $21 \mathrm{~s}^{\prime \prime} \times+1^{\prime \prime} \mathrm{s}^{\prime \prime}$
 225,000 bid. ft . of $2^{\prime \prime} \times 8^{\prime \prime}$ cut $21 / 8^{\prime \prime} \times 818^{\prime \prime}$ $1 \pi 5,000$ bd. ft . of $2^{\prime \prime} \times 10^{\prime \prime}$ cut $21 \mathrm{~s}^{\prime \prime} \times 101 \mathrm{k} \mathrm{\prime}$ $2(x), 00 \mathrm{bd}$. ft . of $2^{\prime \prime} \times 12^{\prime \prime}$ cut $2188^{\prime \prime} \times 1214^{\prime \prime}$ $210,000 \mathrm{bd}$. ft . of $3^{\prime \prime} \times 3^{\prime \prime}$ cut $31 \mathrm{~s}^{\prime \prime} \times 3188^{\prime \prime}$ 20.0 (Win bd. ft . of $3^{\prime \prime} \times 6^{\prime \prime}$ cut $218^{\prime \prime} \times 618^{\prime \prime}$ $250,\left(m \times N\right.$ bd. ft. of $3^{\prime \prime} \times 12^{\prime \prime}$ cut $31 / 8^{\prime \prime} \times 1214^{\prime \prime}$ $3(0),\left(\mathrm{KNO}\right.$ bd. ft . of $4^{\prime \prime} \times 4^{\prime \prime}$ cut $41 \mathrm{~s}^{\prime \prime} \times 418^{\prime \prime}$ 150.000 bd. ft . of $4^{\prime \prime} \times 6^{\prime \prime}$ cut $418^{\prime \prime} \times 618^{\prime \prime}$ $37 . \mathrm{B}, \mathrm{mW}$ bd. ft. of $5^{\prime \prime} \times 8^{\prime \prime}$ cut $518^{\prime \prime} \times 818^{\prime \prime}$ $1 \mathrm{NO},(\mathrm{ON}) \mathrm{bd}$. ft . of $6^{\prime \prime} \times 6^{\prime \prime}$ cut $6316^{\prime \prime} \times 6 \times 3 / 6^{\prime \prime}$ requiring $193,000 \mathrm{bd}$. ft . of solld material. $\begin{array}{llllllll}1^{\prime \prime} \times & 3^{\prime \prime} \text { cut } & 1 & 1 & 16^{\prime \prime} \times & 3 & 1 / 8^{\prime \prime} & \mathrm{r} \\ 1^{\prime \prime} \times & 4^{\prime \prime} \text { cut } & 1 & 1 / 16^{\prime \prime} \times & 4 & 1 & 8^{\prime \prime} & \mathrm{r} \\ 1^{\prime \prime} \times & 6^{\prime \prime} \text { cut } & 1 & 1 & 16^{\prime \prime} \times & 6 & 1 & 8^{\prime \prime} \\ 1^{\prime \prime} \times & 8^{\prime \prime} \text { cut } & 1 & 116^{\prime \prime} \times & 8 & 1 & 8^{\prime \prime} & \mathrm{r} \\ 1^{\prime \prime} \times 19^{\prime \prime} \text { cut } & 1 & 1 & 16^{\prime \prime} \times & \times 9 & 1 / 4^{\prime \prime} & \mathrm{r} \\ 1^{\prime \prime} \times 14^{\prime \prime} \text { cut } & 1 & 1 & 16^{\prime \prime} \times 14 & 1 / 4^{\prime \prime} & \mathrm{r} \\ 1^{\prime \prime} \times 16^{\prime \prime} \text { cut } & 1 & 1 & 16^{\prime \prime} \times 16 & 1 / 4^{\prime \prime} & \mathrm{r} \\ 1^{\prime \prime} \times 18^{\prime \prime} \text { cut } & 1 & 1 & 16^{\prime \prime} \times 18 & 1 / 4^{\prime \prime} & \mathrm{r}\end{array}$ requiring $151,000 \mathrm{bd}$. ft . of solid material. rectuiring $222,000 \mathrm{bd} . \mathrm{ft}$. of solld material. requiring $276,000 \mathrm{bd}$. ft . of solld material. requiring $857,0 \times 0 \mathrm{bd}$. ft . of solid material. requiring $672,000 \mathrm{bd}$. ft . of solld material. requiring $3 \mathrm{ta}, 000 \mathrm{bd}$. ft . of solld material. repuiring $327,000 \mathrm{bd}$. ft . of solld material. requiring $209,000 \mathrm{bd}$. ft . of solld material. requiring $317,000 \mathrm{bd}$. ft . of solid material. remuirgig 5 as.ome bl. ft . of solid material. repuirfing $346,000 \mathrm{bd}$. ft . of solid material. repuiring $316,000 \mathrm{bd}$. ft . of solid material. remining $275,00 \mathrm{bd}$. ft . of solid material. remiring 718.000 bd . ft . of solld material. requiring $\operatorname{sen}, 000 \mathrm{bd}$. ft . of solid material. requiring 261,000 bd. ft . of solld material. reguifing ${ }^{0} \mathrm{ol} 2,0 \mathrm{mon}$ bd. ft . of solid material. requiring 232,000 bd. ft . of solid material. requiring $246,000 \mathrm{bd}$. ft . of solid material. requiring $304.000 \mathrm{bd} . \mathrm{ft}$. of solid material. repuiring $279,0 \mathrm{~mm}$ bd. ft . of solid material. rembiring 340.00 bd . ft . of solld material. requiring lef, $0 \times 0$ bd. ft . of solld material. requiring 100 (00) bd ft. of solld material.

 $200,0 \mathrm{NO}$ bdi. ft . of $8^{\prime \prime} \times 8^{\prime \prime}$ cut $814^{\prime \prime} \times 814^{\prime \prime}$ rectuiring 277 , (KNO brl. ft. of solid material. $2\left(0,000\right.$ bd. ft. of $8^{\prime \prime} \times 1 \underline{\underline{Q}}^{\prime \prime}$ cut $814^{\prime \prime} \times 1214^{\prime \prime}$ requiring $216,000 \mathrm{bx}$. ft . of solid material.


$10,510,000-9,060,000=1,450,000$ bd. ft. required for sawdust, shrinkage and surfacing.
$\frac{1,450,000}{10,510,000}=.138=$ fractional part of the logs, after slab allowance has been made, which becomes waste.
$(1-.138)=$ fractional part becoming lumber.
Therefore the average value of (A) becomes ( $1-.138$ ) for the above milling conditions.
(b) The determination of slab allowance or surface wastage:

This allowance is provided for in the formula by the constant "a", which represents twice the average thickness of the slabs and edgings coming from the small end of logs, regardless of their length. The value of " $a$ " can be closely estimated at any mill by watching the logs being sawed into lumber. If the character of the timber being sawed is such that a waste allowance, additional to that made for slabs and edgings is necessary, to correct for losses due to crook, such an allowance should be made by increasing the value of the factor " $a$ " to a sufficient amount to offset losses caused by such defects.

For the milling conditions under consideration here, the value of "a" is assumed to be $5 / 8^{\prime \prime} \times 2$, or 1.25 . Substituting this value and the average value of (A), already determined, in the general formula, we have the following special form :

$$
(1-.223) \frac{\pi(D-1.25)^{2}}{4 \times 12} L+C=\text { B.M. }
$$

for logs $L$ feet long with no allowance made for taper.
For $8^{\prime}$ sections this form becomes:

$$
(1-.223) \frac{\pi(D-1.25)^{2}}{6}+C
$$

$$
\stackrel{\text { or }}{.407}(\mathrm{D}-1.25)^{2}+\mathrm{C}=\mathrm{B} . \mathrm{M} .
$$

The constant $C$ is included in the formula to counteract excessive taper in small logs, and its value should never be over 10 board feet. It can be definitely determined for a certain class of timber, by first ascertaining the mill overrun for small logs when $C=0$, and then making the value of $C$ great enough to correct for the overrun. Large logs will be affected a negligible amount by the addition of this small quantity.

With $C=3$ board feet, we have for the final reduction of the general rule:

$$
.407(\mathrm{D}-1.25)^{2}+3=\mathrm{B} . \mathrm{M} .
$$

to be applied to $8^{\prime}$ sections with a taper of $1 / 2^{\prime \prime}$ in each $8^{\prime}$.

A volume table based on the above rule with a taper allowance of $1 / 2^{\prime \prime}$ in $8^{\prime}$ should be compiled as follows :


Values for $8^{\prime}$ sections of different diameters are first determined directly from the formula. Then $16^{\prime}$ logs are considered as being made up of two $8^{\prime}$ sections, the one being one-half inch in diameter greater than the other; $24^{\prime} \log$ as three $8^{\prime}$ sections, one of them being the measured diameter at small end of $\log$, another one, one-half inch greater than this, and the third, one inch greater. Thus, 26 board feet, which is the volume given in the above table for a $\log 16^{\prime}$ long and $6^{\prime \prime}$ in diameter, was obtained by adding 12 board feet, which is the volume given for an $8^{\prime}$ section of same diameter, and 14 board feet obtained by averaging twelve and sixteen. (The average of 12 and 16 board feet gives volume for $8^{\prime}$ scection, six and one-half inches in diameter.) The volume of the $24^{\prime} \log$ of six inches in diameter shown in the table was obtained by adding 26 and 16 . Twenty-six board feet being the volume of the first two $8^{\prime}$ sections contained in the $\log$ and sixteen board feet being the volume of the third or largest section. Other values may be obtained in a similar manner.

If the taper allowance were $1^{\prime \prime}$ in $8^{\prime}$ instead of $1 / 2^{\prime \prime}$ in $8^{\prime}$, a $16^{\prime} \log$ $6^{\prime \prime}$ in diameter at the small end would seale the same as two $8^{\prime}$ sections; the one $6^{\prime \prime}$ in diameter and the other $7^{\prime \prime}$. A $24^{\prime} \log 20^{\prime \prime}$ in diameter would, in like manner, scale the same as three $8^{\prime}$ sections; the first $20^{\prime \prime}$, the second $21^{\prime \prime}$ and the third $22^{\prime \prime}$ in diameter. If this log were $22^{\prime}$ long instead of $2 t^{\prime}$ the scale would then be equal to that of the first two sections plus three-quarters of the third. By similar computations, all values composing a complete volume tahle for logs of different diameters and lengths can be compiled.

Log rules determined as explained in this Appendix apply to average conditions existing at the mills where they are made and are average rules which do not measure the fluctuations encountered in individual logs.

